A Solar Spectroscope Exhibit at Utah Valley University

Objective:

Bright, 2-meter-long display of the Sun's visible spectrum

- made with "live" sunlight
- projected onto a screen
- showing many absorption lines

Large public university (almost 40k students)

Dual mission: university + community college

Master's, bachelor's, associate degrees, certificates

Established 1941 as Central Utah Vocational School UTAH VALLEY

LJVL

UNIVERSITY

UTAH VALLEY

LJVL

UNIVERSITY

Pope Science Building

Chemistry
Earth Science
Physics

Eight Feet of Solar Spectrum

Grace Flandrau Planetarium, University of Arizona

In This Issue:

Photoelectric Observing of Occultations — I

Vol. 54, No. 3

SEPTEMBER, 1977

\$1.00

The Case of the Setting Sun

Some Student Projects In Astronomy

Eight Feet of Solar Spectrum

Cosmology Today

Solar Halo Complexes

Light for a Solar Spectrum

Eclipses of Iapetus by Saturn's Rings

AN Ursae Majoris — Another AM Herculis?

10

Slit width

Trade-off between
bright spectrum
and
good spectral resolution

Rough calculations!

$$B = \frac{\text{Average irradiance of spectrum on screen}}{\text{Irradiance of direct sunlight}}$$

$$B \approx (0.0035 \text{ m}) \frac{D^2 G^2 \Delta \lambda}{L^2}$$

D = "diameter" of grating G = grating constant (lines per unit width) $\Delta \lambda =$ spectral resolution L = length of spectrum

Experiments in Pope Science suggest that we need B > 0.007 to obtain a "bright" spectrum.

With

$$D=170 \text{ mm}$$
 $G=1200 \text{ lines per mm}$
 $\Delta \lambda = 0.25 \text{ nm}$
 $L=2000 \text{ mm}$

we get

$$B = 0.009$$

Étendue

- □ Étendue = "geometrical extent"
- \square Also known as $A\Omega$ product
- □ Related to Lagrange invariant

(area of image of slit on screen) x (solid angle of imaging lens viewed from screen) ≈ (area of objective lens/mirror) x (accepted solid angle on sky)

Spectrum of Solar Radiation (Earth)

ASTM reference spectra sea level irradiance: air mass 1.5 (solar zenith angle 48.19°)

Multiplied by photopic response function of human eye...

Test setup

300 mm concave mirror

140 mm collimator/imaging lens

206mm x 154 mm grating (plastic cover on!)

(thin clouds)

spectrum 1.1 m long

Plans

- □ Design of optical system using WinLens3D and homemade ray tracing program
- □ Reduce curvature of image
- □ Prepare proposal to UVU College of Science and UVU Facilities
- □ Phase Two: spectrometer (view spectrum through eyepiece) with 0.01 nm resolution; user can scan spectrum

Students

Jonah Allen
Joseph Burton
Ryan Fullmer
Spencer Grierson
David Miller

Scott Olsen
Tyler Olsen
Keely Stevenson
Bailee Thackeray
Caroline Torgersen

Work supported by

- □ UVU College of Science
- □ UVU Department of Physics
- □ NASA Rocky Mountain Space Consortium

Bibliography

"Eight Feet of Solar Spectrum," O.R. Norton, Sky and Telescope, September 1977, p 176.

ASTM G-173 reference solar spectral irradiance at https://rredc.nrel.gov/solar//spectra/am1.5/ASTMG173/ASTMG173.html

CIE color matching functions at http://cvrl.ucl.ac.uk/cmfs.htm

Etendue figure by Jcc2011 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=63304311

Please send me your ideas and suggestions!

Steve Wasserbaech

WasserSt@uvu.edu

Thank you!

Étendue

 $d(\text{etendue}) = n^2 dS \cos\theta d\Omega$

